
[Learning to Fuzz]
(For the $$$)

Learning to Fuzz~$: whoami

$: Y1 NUS Student (BComp, CS)

$: Started playing CTFs in June of my last year of high
school and subsequently learned how to do infosec-related
research (~6 months of CTF/infosec research then 2 years
of brain rot)

$: Interned at STARLabs (Oct 20 – Feb 21): CVE-2021-33760

$: Not a smart guy

Learning to Fuzz~$: Agenda

0x0: What is Fuzzing?

0x1: Tools

0x2: The Fuzzer and the Harness

0x3: Building the Harness

0x4: Testing the Harness

0x5: Running the Fuzzer

0x6: CVE-2021-33760

Learning to Fuzz~$: What is Fuzzing?

$: Using edge cases to find more edge cases
 ~: Try to execute as much of the code as possible
 ~: Systematically break every part of it

$: Find crashes with past crashes (or base cases)

$: Mutate > Test > Record Crash (if any) > Repeat

Fuzzer Application

Fuzzy Inputs

Coverage Data

Learning to Fuzz~$: Tools

> WinDBG/WinDBG Preview (For Windows)

> GDB + Plugins (For Linux)

> Source Code if any (Chromium source etc.)

> Decompiler like IDA/Ghidra

> Visual Studio (For Windows apps)

> Any IDE you like with (usually) GCC/G++

Learning to Fuzz~$: The Fuzzer and The
Harness

> We use the fuzzer to fuzz the application

> We use a harness to “activate” the library we wish
to target

> Fuzzer and harness must work together

> Fuzzer runs the harness with base inputs (“start
points” to mutate from)

Learning to Fuzz~$: The Fuzzer and The
Harness

> Popular fuzzers exist: Peach Fuzzer, American Fuzzy
Loop, etc…

> WinAFL: https://github.com/googleprojectzero/winafl

> Fuzzers can execute applications thousands of times
per second!

https://github.com/googleprojectzero/winafl

Learning to Fuzz~$: The Fuzzer and The
Harness

> Applications are big…

> Per-execution cycle is slow

> We are not always interested in the whole
application, just the specific library

Learning to Fuzz~$: Building the
Harness

> Decompile the library

> Find out what it does

> Run debugger to see what happens during runtime

> Replicate execution cycle without replicating the
whole application

Learning to Fuzz~$: Building the
Harness

sxe : First-chance handling
bp : Set breakpoint
bm : Set symbol breakpoint

k : View callstack (function calls)
dc : Display double word values in given range
dps : Display memory in given range
pt : Step until next return

g : Continue
p : Step

Learning to Fuzz~$: Building the
Harness

(e)ax: Primary accumulator (return value/input value)
(e)sp: Stack pointer

bx: Base register
cx: Count register
dx: Data register

ip: Instruction pointer
bp: Base pointer

Learning to Fuzz~$: Building the
Harness

> Adobe JP2K Library: JP2KLib.dll

> Time-Travel Debugging is extremely useful

> If you want to try it out:
 1. Disable PageHeap on Acrobat DC (Google)
 2. Run Acrobat DC in WinDBG Preview
 3. Drag a sample JP2K file into Acrobat DC

> Demo

Learning to Fuzz~$: Testing the
Harness

> This is just like building an application: debug,
debug and debug even more.

> Test your harness with in-app debugging as well
(logging etc.)

> Test your harness in the debugger! Theory can only
take you this far :^)

Learning to Fuzz~$: Running the
Fuzzer

> We will make use of DynamoRIO for dynamic
instrumentation -> maps library coverage

> Higher coverage = higher chance of finding crash

> We will watch for stability, coverage and
executions/s and try to maximize all of them

Learning to Fuzz~$: Evaluation

> Optimizations (achieve similar coverage with less
function calls etc.)

> Further reverse engineering

> Analyse your crashes -> 90% of the time they will
be bogus crashes due to measures like sandboxing,
exception handling etc.

> A good base input is as important as a good harness

Learning to Fuzz~$: CVE-2021-33760

> Integer underflow leading to OOB-read in Windows
Explorer (IPropertyStore parsing)

0:000> g
(56c8.7dc4): Access violation - code c0000005 (first/second chance not available)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
Time Travel Position: B8573:0
mfsrcsnk!CMPEGFrame::DeSerializeFrameHeader+0x42:
00007ffb`2629f872 418b0e mov ecx,dword ptr [r14] ds:000001c7`29218504=????????

0:000> !heap -p -a @r14 address 000001c729218504 found in _DPH_HEAP_ROOT @ 1c7290a1000
in busy allocation (DPH_HEAP_BLOCK: UserAddr UserSize - VirtAddr VirtSize)

1c7290a5d68: 1c729214000 4000 - 1c729213000 6000

Learning to Fuzz~$: CVE-2021-33760

CMP3MediaSourcePlugin::ParseHeader() -> for parsing MP3 header

CMP3MediaSourcePlugin::DoScanForFrameHeader() is called when parsing header
and stores offset = 0x2282.

LABEL_29:
 LODWORD(v34) = offset;
 remaining_size -= offset; // 0x00000000000022e6 - 0x0000000000002282 =

 0x0000000000000064
 buf += offset; // 0x000001c729214000 + 0x0000000000002282 =

 0x000001c729216282
 goto LABEL_30;
}

Learning to Fuzz~$: CVE-2021-33760

CMP3MediaSourcePlugin::DoReadFirstFrameBody() is called, then
CMPEGFrame::DeSerializeFrameBody() is called with the same arguments.

// buf=000001c729216282, remaining_size=0000000000000064, &offset=0000003fdc7ce060

hr = CMP3MediaSourcePlugin::DoReadFirstFrameBody(MPEGFrame, buf, remaining_size, &offset);
===
0:000> k
 # Child-SP RetAddr Call Site
00 0000003f`dc7cdee8 00007ffb`2629f789 mfsrcsnk!CMPEGFrame::DeSerializeFrameBody
01 0000003f`dc7cdef0 00007ffb`2629aaa1 mfsrcsnk!CMP3MediaSourcePlugin::ReadMPEGFrameBody+0x49
02 0000003f`dc7cdf60 00007ffb`2629e9ce mfsrcsnk!CMP3MediaSourcePlugin::DoReadFirstFrameBody+0x41

0:000> r rcx, rdx, r8, r9
rcx=000001c72921bea0 rdx=000001c729216282 r8=0000000000000064 r9=0000003fdc7ce060

Learning to Fuzz~$: CVE-2021-33760

Within CMPEGFrame::DeSerializeFrameBody(), its internal check fails as the
remaining size 0x64 is less than the required size

if (body_tag == 'ofnI') {
LODWORD(required_size) = required_size + 0x74;
if (remaining_size < required_size) // required_size = 0x74

goto LABEL_22;
}

LABEL_22:
 CallStackScopeTrace::~CallStackScopeTrace(v13);
 return hr; //returns HRESULT 0
}

Offset is used in calculation again! Integer underflow occurs.

LODWORD(v34) = offset;
remaining_size -= offset; // 0x0000000000000064 - 0x0000000000002282 = 0x00000000ffffdde2
buf += offset; // 0x000001c729216282 + 0x0000000000002282 = 000001c729218504

Learning to Fuzz~$: CVE-2021-33760

At CMPEGFrame::DeSerializeFrameHeader+0x39 (mfsrcsnk.dll+0xf869), a check
is performed. Since remaining_size contains a large value, the < check is
not passed. As the code executes to this stage and it tries to access the
invalid pointer stored in buf, an OOB read occurs.

if (remaining_size < 4) {
... // Irrelevant Code

}

v10 = *buf; // OOB Read

Learning to Fuzz~$: Afterword

> Fuzzing is not as easy as you think!

> Requires understanding of code execution and lots
of debugging

> I am as new as everyone at this, do read up more
and don’t take my word as gospel

> Blog: https://ultimatehg.github.io

https://ultimatehg.github.io/

[End]

	[Learning to Fuzz](For the $$$)
	Learning to Fuzz~$: whoami
	Learning to Fuzz~$: Agenda
	Learning to Fuzz~$: What is Fuzzing?
	Learning to Fuzz~$: Tools
	Learning to Fuzz~$: The Fuzzer and The 				 Harness
	Learning to Fuzz~$: The Fuzzer and The 				 Harness
	Learning to Fuzz~$: The Fuzzer and The 				 Harness
	Learning to Fuzz~$: Building the 					 Harness
	Learning to Fuzz~$: Building the 					 Harness
	Learning to Fuzz~$: Building the 					 Harness
	Learning to Fuzz~$: Building the 					 Harness
	Learning to Fuzz~$: Testing the 					 Harness
	Learning to Fuzz~$: Running the 					 Fuzzer
	Learning to Fuzz~$: Evaluation
	Learning to Fuzz~$: CVE-2021-33760
	Learning to Fuzz~$: CVE-2021-33760
	Learning to Fuzz~$: CVE-2021-33760
	Learning to Fuzz~$: CVE-2021-33760
	Learning to Fuzz~$: CVE-2021-33760
	Learning to Fuzz~$: Afterword
	[End]

